Reg. No.: 92 02 14 106 019

Question Paper Code: 50425

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2017
Sixth/Seventh Semester
Electronics and Communication Engineering
EC 6016 – OPTO ELECTRONIC DEVICES
(Common to Medical Electronics)
(Regulations 2013)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions

PART - A

(10×2=20 Marks)

- 1. State Bragg's law.
- 2. List down any two applications of Hall effect.
- 3. Find the ratio of the spontaneous to stimulated emission rates in a tungsten lamp that radiates at an average frequency of 5×10^{14} Hz at an operating temperature of 1300 K.
- 4. List down any four advantages of LED over lasers.
- 5. Define the gain-bandwidth product of the photoconductive detector.
- 6. Define conversion efficiency of a solar cell.
- 7. Calculate the quantum efficiency of an avalanche photodiode with a responsivity of 0.7 A/W which detects 1.5 μ m photo excitation.
- 8. Compare the two classes of switching and logic devices.
- 9. What is meant by opto electronic integrated circuits?
- Define eye closure and jitter.

PART - B

(5×16=80 Marks)

- 11. a) i) Describe the BCC unit cell and hence determine the packing fraction. (8
 - ii) Explain the Hall set up to determine the majority carrier parameters. (8)

(OR)

	b)	i) Use Boltzmann and Joyce-Dixon approximations to estimate the error in calculating the position of Fermi level at 300 K in GaAs with $n = 2 \times 10^{17}$ cm ⁻³ . $N_C = 4.4 \times 10^{17}$ cm ⁻³ .	(6)
			(10)
12.	a)	i) Discuss on Franz-Keldysh effect.	(6)
		ii) Describe the conduction processes in semiconductors and derive the expression for total current density.	(10)
		(OR) to the last section of the last section o	
	b)	i) Describe Einstein's theory of stimulated emission and hence derive the expressions for A and B coefficients.	(8)
		ii) Determine the number of modes of an AlGaAs layer supported by the gain spectrum which has a bandwidth of 6 nm. The laser has a cavity length of 200 μ m and the peak emission wavelength is 800 nm.	(0)
		Assume $n_r = 3.3$.	(8)
13.	a)	Derive an expression for the gain of a photoconductor with dc excitation if the device in case of both the contacts are ohmic.	(16)
		not be seen to (OR) of x d to vone upon energy as is setable unit and	
	b)	Consider an Si solar cell at 300 K. Calculate the open circuit voltage of the solar cell using the parameters. Area = 1 cm², Acceptor doping $N_a = 5 \times 10^{17}$ cm⁻³, Donor doping $N_d = 10^{16}$ cm⁻³, Electron diffusion coefficient $D_n = 20$ cm²/s, Hole diffusion coefficient $D_p = 20$ cm²/s, Electron recombination time	
		τ_n = 5 × 10 ⁻⁷ s, Hole recombination time τ_p = 10 ⁻⁷ s, Photocurrent I_ = 25 mA.	(16)
14.	a)	Describe an Electro-optic phase modulator with neat diagram and hence arrive at the expression for the phase difference at the output plane. (OR)	(16)
	b).	With the circuit diagram of thresholding gate with three controllers and a modulator, discuss the output characteristics and the truth table.	(16)
15.	a)	Describe a monolithically integrated front end photo receiver. Also with neat sketches, explain the measurement of the eye diagram of the photo receiver.	
		The end of the BOC unit cell and hence determit (RO) paciting traction.	
	b)	With a neat diagram, describe about the Mach-Zehnder interferometer with input and output 3-dB couplers and arrive at the expression for half wave voltage.	(16)

Regula: 9202141060